Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 463
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 43(10): 1851-1866, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589135

RESUMO

BACKGROUND: High levels of Lp(a) (lipoprotein(a)) are associated with multiple forms of cardiovascular disease. Lp(a) consists of an apoB100-containing particle attached to the plasminogen homologue apo(a). The pathways for Lp(a) clearance are not well understood. We previously discovered that the plasminogen receptor PlgRKT (plasminogen receptor with a C-terminal lysine) promoted Lp(a) uptake in liver cells. Here, we aimed to further define the role of PlgRKT and to investigate the role of 2 other plasminogen receptors, annexin A2 and S100A10 (S100 calcium-binding protein A10) in the endocytosis of Lp(a). METHODS: Human hepatocellular carcinoma (HepG2) cells and haploid human fibroblast-like (HAP1) cells were used for overexpression and knockout of plasminogen receptors. The uptake of Lp(a), LDL (low-density lipoprotein), apo(a), and endocytic cargos was visualized and quantified by confocal microscopy and Western blotting. RESULTS: The uptake of both Lp(a) and apo(a), but not LDL, was significantly increased in HepG2 and HAP1 cells overexpressing PlgRKT, annexin A2, or S100A10. Conversely, Lp(a) and apo(a), but not LDL, uptake was significantly reduced in HAP1 cells in which PlgRKT and S100A10 were knocked out. Surface binding studies in HepG2 cells showed that overexpression of PlgRKT, but not annexin A2 or S100A10, increased Lp(a) and apo(a) plasma membrane binding. Annexin A2 and S100A10, on the other hand, appeared to regulate macropinocytosis with both proteins significantly increasing the uptake of the macropinocytosis marker dextran when overexpressed in HepG2 and HAP1 cells and knockout of S100A10 significantly reducing dextran uptake. Bringing these observations together, we tested the effect of a PI3K (phosphoinositide-3-kinase) inhibitor, known to inhibit macropinocytosis, on Lp(a) uptake. Results showed a concentration-dependent reduction confirming that Lp(a) uptake was indeed mediated by macropinocytosis. CONCLUSIONS: These findings uncover a novel pathway for Lp(a) endocytosis involving multiple plasminogen receptors that enhance surface binding and stimulate macropinocytosis of Lp(a). Although the findings were produced in cell culture models that have limitations, they could have clinical relevance since drugs that inhibit macropinocytosis are in clinical use, that is, the PI3K inhibitors for cancer therapy and some antidepressant compounds.


Assuntos
Anexina A2 , Plasminogênio , Humanos , Plasminogênio/química , Plasminogênio/metabolismo , Lipoproteína(a)/metabolismo , Anexina A2/genética , Dextranos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Transporte , Apolipoproteínas A/metabolismo
2.
Arch Biochem Biophys ; 743: 109671, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336343

RESUMO

Staphylokinase (SAK), a potent fibrin-specific plasminogen activator secreted by Staphylococcus aureus, carries a pair of lysine at the carboxy-terminus that play a key role in plasminogen activation. The underlaying mechanism by which C-terminal lysins of SAK modulate its function remains unknown. This study has been undertaken to unravel role of C-terminal lysins of SAK in plasminogen activation. While deletion of C-terminal lysins (Lys135, Lys136) drastically impaired plasminogen activation by SAK, addition of lysins enhanced its catalytic activity 2-2.5-fold. Circular dichroism analysis revealed that C-terminally modified mutants of SAK carry significant changes in their beta sheets and secondary structure. Structure models and RING (residue interaction network generation) studies indicated that the deletion of lysins has conferred extensive topological alterations in SAK, disrupting vital interactions at the interface of SAK.plasmin complex, thereby leading significant impairment in its functional activity. In contrast, addition of lysins at the C-terminus enhanced its conformational flexibility, creating a stronger coupling at the interface of SAK.plasmin complex and making it more efficient for plasminogen activation. Taken together, these studies provided new insights on the role of C-terminal lysins in establishment of precise intermolecular interactions of SAK with the plasmin for the optimal function of activator complex.


Assuntos
Fibrinolisina , Lisina , Fibrinolisina/química , Plasminogênio/química , Ativadores de Plasminogênio/química
3.
Bioorg Chem ; 137: 106579, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37149949

RESUMO

Plasminogen Kringle 5 is one of the most potent cytokines identified to inhibit the proliferation and migration of vascular endothelial cells. Herein, six aptamer candidates that specifically bind to Kringle 5 were generated by the systematic evolution of ligands by exponential enrichment (SELEX). After 10 rounds of screening against Kringle 5, a highly enriched ssDNA pool was sequenced and the representative aptamers were subjected to binding assays to evaluate their affinity and specificity. The preferred aptamer KG-4, which demonstrated a low dissociation constant (Kd) of âˆ¼ 432 nM and excellent selectivity for Kringle 5. A conserved "motif" of eight bases located at the stem-loop intersection, common to the aptamer, was further confirmed as the recognition element for binding with Kringle 5. The bulge formed by the motif and depression on the lysine binding site of Kringle 5 were both located at the binding interface, and the "induced fit" between their structures played a central role in the recognition process. Kringle 5 interacts KG-4 primarily through enthalpy-driven van der Waals forces and hydrogen bond. The key nucleotides A34 and C35 at motif on KG-4 and the positively charged amino acids in the loop 1 and loop 4 regions on Kringle 5 play a major role in the interaction. Furthermore, KG-4 dose-dependently reduced the proliferation inhibition of vascular endothelial cells by Kringle 5 and had a blocking effect on the function of Kringle 5 in inhibiting migration and promoting apoptosis of vascular endothelial cells in vitro. This study put a new light on protein-aptamer binding mechanism and may provide insight into the treatment of ischemic diseases by target depletion of Kringle 5.


Assuntos
Aptâmeros de Nucleotídeos , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Plasminogênio/química , Plasminogênio/metabolismo , Sítios de Ligação , Aptâmeros de Nucleotídeos/química
4.
J Biomol Struct Dyn ; 41(24): 15023-15032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36927470

RESUMO

Tetranectin-plasminogen interaction plays a defining role in extracellular matrix degradation, enabling tumor cell invasion and metastasis. This interaction occurs via the carbohydrate recognition domain (CRD) and Kringle 4 domain of tetranectin and plasminogen, respectively, leading to activation of the plasminogen-cascade that triggers the proteolytic processes. Thus targeting this interaction represents an important strategy to suppress tumor cell migration and invasion. In this direction, we attempted to target the CRD of tetranectin to inhibit its interaction with the Kringle-4 domain of plasminogen using natural bioactive compounds. A cheminformatics pipeline for drug designing and screening was utilized to obtain lead compound(s) that exhibit conformationally and energetically viable CRD binding. Out of 206 compounds screened, diosgenin and scytonemin displayed the most favorable interactions with CRD. Short-term molecular dynamics simulations of 20 ns were employed to further study the conformational stability of both compounds with tetranectin CRD which reflected at the increased stability of diosgenin in the CRD binding pocket compared to scytonemin. Finally, an extended molecular dynamic simulation of 100 ns affirmed the robust and stable interaction of diosgenin with CRD. Furthermore, diosgenin was observed to exert a pronounced anti-proliferative effect on high tetranectin-expressing MDA-MB-231 breast cancer cells. The inhibitory effect of diosgenin on the tetranectin-plasminogen interaction was corroborated by the reduced migration and invasiveness of MDA-MB-231 cells under diosgenin treatment. Overall the study presents an alternate and safer approach to impede breast cancer metastasis and delineates the novel anti-metastatic activity of diosgenin.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias da Mama , Diosgenina , Melanoma , Neoplasias Cutâneas , Humanos , Feminino , Plasminogênio/química , Plasminogênio/metabolismo , Proteínas Sanguíneas/química , Neoplasias da Mama/tratamento farmacológico
5.
J Thromb Haemost ; 21(6): 1630-1635, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36914052

RESUMO

BACKGROUND: Streptococcus pyogenes (GAS) is a human bacterial pathogen that generates various mild to severe diseases. Worldwide, there are approximately 700 million cases of GAS infections per year. In some strains of GAS, the surface-resident M-protein, plasminogen-binding group A streptococcal M-protein (PAM), binds directly to human host plasminogen (hPg), where it is activated to plasmin through a mechanism involving a Pg/bacterial streptokinase (SK) complex as well as endogenous activators. Binding to Pg and its activation are dictated by selected sequences within the human host Pg protein, making it difficult to generate animal models to study this pathogen. OBJECTIVES: To develop a murine model for studying GAS infection by minimally modifying mouse Pg to enhance the affinity to bacterial PAM and sensitivity to GAS-derived SK. METHODS: We used a targeting vector that contained a mouse albumin-promoter and mouse/human hybrid plasminogen cDNA targeted to the Rosa26 locus. Characterization of the mouse strain consisted of both gross and histological techniques and determination of the effects of the modified Pg protein through surface plasmon resonance measurements, Pg activation analyses, and mouse survival post-GAS infection. RESULTS: We generated a mouse line expressing a chimeric Pg protein consisting of 2 amino acid substitutions in the heavy chain of Pg and a complete replacement of the mouse Pg light chain with the human Pg light chain. CONCLUSION: This protein demonstrated an enhanced affinity for bacterial PAM and sensitivity to activation by the Pg-SK complex, making the murine host susceptible to the pathogenic effects of GAS.


Assuntos
Streptococcus pyogenes , Estreptoquinase , Animais , Camundongos , Humanos , Estreptoquinase/genética , Estreptoquinase/química , Estreptoquinase/metabolismo , Streptococcus pyogenes/química , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Plasminogênio/química , Ligação Proteica
6.
Biochemistry ; 62(3): 735-746, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36701429

RESUMO

Cellular plasminogen (Pg) receptors (PgRs) are utilized to recruit Pg; stimulate its activation to the serine protease, plasmin (Pm); and sterically protect the surface Pm from inactivation by host inhibitors. One such PgR is the moonlighting enzyme, enolase, some of which leaves the cytoplasm and resides at the cell surface to potentially function as a PgR. Since microbes employ conscription of host Pg by PgRs as one virulence mechanism, we explored the structural basis of the ability of Streptococcus pyogenes enolase (Sen) to function in this manner. Employing single-particle cryo-electron microscopy (cryo-EM), recombinant Sen from S. pyogenes was modeled at 2.6 Å as a stable symmetrical doughnut-shaped homooctamer with point group 422 (D4) symmetry, with a monomeric subunit molecular weight of ∼49 kDa. Binding sites for hPg were reported in other studies to include an internal K252,255 and the COOH-terminal K434,435 residues of Sen. However, in native Sen, the latter are buried within the minor interfaces of the octamer and do not function as a Pg-binding epitope. Whereas Sen and hPg do not interact in solution, when Sen is bound to a surface, hPg interacts with Sen independently of K252,255,434,435. PgRs devoid of COOH-terminal lysine utilize lysine isosteres comprising a basic residue, "i", and an anionic residue at "i + 3" around one turn of an α-helix. We highlight a number of surface-exposed potential hPg-binding lysine isosteres and further conclude that while the octameric structure of Sen is critical for hPg binding, disruption of this octamer without dissociation exposes hPg-binding epitopes.


Assuntos
Proteínas de Bactérias , Plasminogênio , Plasminogênio/química , Plasminogênio/metabolismo , Proteínas de Bactérias/química , Streptococcus pyogenes , Microscopia Crioeletrônica , Ligação Proteica , Fosfopiruvato Hidratase/metabolismo , Lisina/química , Proteínas de Transporte/metabolismo , Serina Proteases/metabolismo
7.
Curr Pharm Biotechnol ; 24(10): 1326-1334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36424778

RESUMO

BACKGROUND: Streptokinase, one of the most widely used thrombolytic medicines, is a favorable protein for site-specific PEGylation as it lacks any cysteine residues in its amino acid sequence; however, any changes in the protein's structure should be carefully planned to avoid undesired changes in its function. OBJECTIVES: This study aimed to design and produce novel di/tri-cysteine variants of streptokinase from previously developed cysteine analogues, Arg45, Glu263, and Arg319, as candidates for multiple site-specific PEGylation. METHODS: Using bioinformatics tools and site-directed mutagenesis, we incorporated concurrent mutations at Arg45, Glu263, and Arg319 (carried out in our previous study) to create di/tri-cysteine variants of streptokinase proteins (SK45-319cys, SK263-319cys, and SK45-263-319cys) and evaluated their kinetic activity parameters by a colorimetric method, using H-D-Val-Leu-Lys-pNA.2HCl (S2251) as substrate. RESULTS: Based on the kinetic results, SK263-319cys with 44% enzyme efficiency increment compared to wild-type SK was the superior protein in terms of activity; as well, SK45-319cys and SK45-263-319cys showed 17 and 22% activity enhancement, respectively. Docking of the mutant streptokinase proteins with µ-plasmin demonstrated that changes in intermolecular interactions caused by amino acid substitution could be the reason for activity difference. CONCLUSION: The novel mutant proteins created in this study exhibit remarkable biological activity and may be uniquely suitable for simultaneous PEGylation on two/three domains. As well, PEGylated derivates of these variants might prove to be more proficient proteins, compared to the singlecysteine analogs of streptokinase; because of their more surface coverage and increased molecular weight.


Assuntos
Cisteína , Estreptoquinase , Estreptoquinase/genética , Estreptoquinase/metabolismo , Cisteína/genética , Plasminogênio/química , Plasminogênio/genética , Plasminogênio/metabolismo , Fibrinolíticos , Mutação
8.
Int J Biol Macromol ; 206: 64-73, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219777

RESUMO

In this study, we examined for the first time the effect of the HOCl/OCl-- and H2O2-induced oxidation of Glu-plasminogen on damage to its primary structure and the biological activity of plasmin. The consolidated results obtained with the aid of MS/MS, electrophoresis, and colourimetry, demonstrated that none of the oxidised amino acid residues found in the proenzyme treated with 25 µM HOCl/OCl- or 100 µM H2O2 were functionally significant for plasminogen. However, the treatment of plasminogen with increasing concentrations of HOCl/OCl- from 25 µM to 100 µM or H2O2 from 100 µM to 300 µM promoted a partial loss in the activity of oxidised plasmin. Several methionine residues (Met57, Met182, Met385, Met404, Met585, and Met788) localized in different protein domains have been shown to serve as ROS traps, thus providing an efficient defense mechanism against oxidative stress. Oxidised Trp235, Trp417, Trp427, Trp761, and Tyr672 are most likely responsible for the reduced biological activity of Glu-plasminogen subjected to strong oxidation. The results of the present study, along with those of previous studies, indicate that the structure of Glu-plasminogen is adapted to oxidation to withstand oxidative stress induced by ROS.


Assuntos
Ácido Hipocloroso , Plasminogênio , Fibrinolisina , Peróxido de Hidrogênio , Ácido Hipocloroso/química , Peróxidos , Plasminogênio/química , Espectrometria de Massas em Tandem
9.
Microbiologyopen ; 10(6): e1252, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34964287

RESUMO

The direct binding of human plasminogen (hPg), via its kringle-2 domain (K2hPg ), to streptococcal M-protein (PAM), largely contributes to the pathogenesis of Pattern D Group A Streptococcus pyogenes (GAS). However, the mechanism of complex formation is unknown. In a system consisting of a Class II PAM from Pattern D GAS isolate NS88.2 (PAMNS88.2 ), with one K2hPg binding a-repeat in its A-domain, we employed biophysical techniques to analyze the mechanism of the K2hPg /PAMNS88.2 interaction. We show that apo-PAMNS88.2 is a coiled-coil homodimer (M.Wt. ~80 kDa) at 4°C-25°C, and is monomeric (M.Wt. ~40 kDa) at 37°C, demonstrating a temperature-dependent dissociation of PAMNS88.2 over a narrow temperature range. PAMNS88.2 displayed a single tight binding site for K2hPg at 4°C, which progressively increased at 25°C through 37°C. We isolated the K2hPg /PAMNS88.2 complexes at 4°C, 25°C, and 37°C and found molecular weights of ~50 kDa at each temperature, corresponding to a 1:1 (m:m) K2hPg /PAMNS88.2  monomer complex. hPg activation experiments by streptokinase demonstrated that the hPg/PAMNS88.2  monomer complexes are fully functional. The data show that PAM dimers dissociate into functional monomers at physiological temperatures or when presented with the active hPg module (K2hPg ) showing that PAM is a functional monomer at 37°C.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Kringles , Plasminogênio/química , Plasminogênio/metabolismo , Streptococcus pyogenes/metabolismo , Sítios de Ligação , Humanos , Peso Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Estreptoquinase/metabolismo , Temperatura , Termodinâmica
10.
Mar Drugs ; 19(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071669

RESUMO

Tetraselmis subcordiformis, a unicellular marine green alga, is used widely in aquaculture as an initial feeding for fish, bivalve mollusks, penaeid shrimp larvae, and rotifers because of its rich content of amino acids and fatty acids. A stable nuclear transformation system using the herbicide phosphinothricin (PPT) as a selective reagent was established previously. In this research, the recombinant expression in T. subcordiformis was investigated by particle bombardment with the rt-PA gene that encodes the recombinant human tissue-type plasminogen activator (Reteplase), which is a thrombolytic agent for acute myocardial infarction treatment. Transgenic algal strains were selected by their resistance to PPT, and expression of rt-PA was validated by PCR, Southern blotting, and Western blotting, and bioactivity of rt-PA was confirmed by the fibrin agarose plate assay for bioactivity. The results showed that rt-PA was integrated into the genome of T. subcordiformis, and the expression product was bioactive, indicating proper post-transcriptional modification of rt-PA in T. subcordiformis. This report contributes to efforts that take advantage of marine microalgae as cell factories to prepare recombinant drugs and in establishing a characteristic pathway of oral administration in aquaculture.


Assuntos
Clorófitas/metabolismo , Fibrinolíticos/metabolismo , Microalgas/metabolismo , Ativador de Plasminogênio Tecidual/biossíntese , Clorófitas/genética , Microbiologia Industrial , Microalgas/genética , Plasminogênio/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ativador de Plasminogênio Tecidual/química , Ativador de Plasminogênio Tecidual/genética
11.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803235

RESUMO

Fibrinolysis is an important process in hemostasis responsible for dissolving the clot during wound healing. Plasmin is a central enzyme in this process via its capacity to cleave fibrin. The kinetics of plasmin generation (PG) and inhibition during fibrinolysis have been poorly understood until the recent development of assays to quantify these metrics. The assessment of plasmin kinetics allows for the identification of fibrinolytic dysfunction and better understanding of the relationships between abnormal fibrin dissolution and disease pathogenesis. Additionally, direct measurement of the inhibition of PG by antifibrinolytic medications, such as tranexamic acid, can be a useful tool to assess the risks and effectiveness of antifibrinolytic therapy in hemorrhagic diseases. This review provides an overview of available PG assays to directly measure the kinetics of plasmin formation and inhibition in human and mouse plasmas and focuses on their applications in defining the role of plasmin in diseases, including angioedema, hemophilia, rare bleeding disorders, COVID-19, or diet-induced obesity. Moreover, this review introduces the PG assay as a promising clinical and research method to monitor antifibrinolytic medications and screen for genetic or acquired fibrinolytic disorders.


Assuntos
Análise Química do Sangue/métodos , Doença , Fibrinolisina/análise , Fibrinolisina/metabolismo , Animais , Antifibrinolíticos/sangue , Fibrina/análise , Fibrina/química , Fibrinolíticos/sangue , Humanos , Plasminogênio/análise , Plasminogênio/química , Plasminogênio/metabolismo
12.
Blood ; 137(21): 2881-2889, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33735914

RESUMO

Plasminogen is an abundant plasma protein that exists in various zymogenic forms. Plasmin, the proteolytically active form of plasminogen, is known for its essential role in fibrinolysis. To date, therapeutic targeting of the fibrinolytic system has been for 2 purposes: to promote plasmin generation for thromboembolic conditions or to stop plasmin to reduce bleeding. However, plasmin and plasminogen serve other important functions, some of which are unrelated to fibrin removal. Indeed, for >40 years, the antifibrinolytic agent tranexamic acid has been administered for its serendipitously discovered skin-whitening properties. Plasmin also plays an important role in the removal of misfolded/aggregated proteins and can trigger other enzymatic cascades, including complement. In addition, plasminogen, via binding to one of its dozen cell surface receptors, can modulate cell behavior and further influence immune and inflammatory processes. Plasminogen administration itself has been reported to improve thrombolysis and to accelerate wound repair. Although many of these more recent findings have been derived from in vitro or animal studies, the use of antifibrinolytic agents to reduce bleeding in humans has revealed additional clinically relevant consequences, particularly in relation to reducing infection risk that is independent of its hemostatic effects. The finding that many viruses harness the host plasminogen to aid infectivity has suggested that antifibrinolytic agents may have antiviral benefits. Here, we review the broadening role of the plasminogen-activating system in physiology and pathophysiology and how manipulation of this system may be harnessed for benefits unrelated to its conventional application in thrombosis and hemostasis.


Assuntos
Plasminogênio/fisiologia , Animais , Antifibrinolíticos/uso terapêutico , Encéfalo/enzimologia , Conjuntivite/fisiopatologia , Ativação Enzimática , Fibrina/metabolismo , Fibrinolisina/fisiologia , Fibrinólise/fisiologia , Fibrinolíticos/uso terapêutico , Humanos , Imunidade/fisiologia , Infecções/fisiopatologia , Inflamação , Camundongos , Plasminogênio/química , Plasminogênio/deficiência , Plasminogênio/farmacologia , Plasminogênio/uso terapêutico , Radiodermatite/tratamento farmacológico , Receptores de Superfície Celular/fisiologia , Dermatopatias Genéticas/fisiopatologia , Trombose/diagnóstico , Trombose/tratamento farmacológico , Ácido Tranexâmico/farmacologia , Ácido Tranexâmico/uso terapêutico , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Ferimentos e Lesões/tratamento farmacológico
13.
Sci Rep ; 11(1): 4964, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654183

RESUMO

Borrelia miyamotoi, a relapsing fever spirochete transmitted by Ixodid ticks causes B. miyamotoi disease (BMD). To evade the human host´s immune response, relapsing fever borreliae, including B. miyamotoi, produce distinct variable major proteins. Here, we investigated Vsp1, Vlp15/16, and Vlp18 all of which are currently being evaluated as antigens for the serodiagnosis of BMD. Comparative analyses identified Vlp15/16 but not Vsp1 and Vlp18 as a plasminogen-interacting protein of B. miyamotoi. Furthermore, Vlp15/16 bound plasminogen in a dose-dependent fashion with high affinity. Binding of plasminogen to Vlp15/16 was significantly inhibited by the lysine analog tranexamic acid suggesting that the protein-protein interaction is mediated by lysine residues. By contrast, ionic strength did not have an effect on binding of plasminogen to Vlp15/16. Of relevance, plasminogen bound to the borrelial protein cleaved the chromogenic substrate S-2251 upon conversion by urokinase-type plasminogen activator (uPa), demonstrating it retained its physiological activity. Interestingly, further analyses revealed a complement inhibitory activity of Vlp15/16 and Vlp18 on the alternative pathway by a Factor H-independent mechanism. More importantly, both borrelial proteins protect serum sensitive Borrelia garinii cells from complement-mediated lysis suggesting multiple roles of these two variable major proteins in immune evasion of B. miyamotoi.


Assuntos
Proteínas de Bactérias , Borrelia , Proteínas do Sistema Complemento , Plasminogênio , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Borrelia/química , Borrelia/metabolismo , Proteínas do Sistema Complemento/química , Proteínas do Sistema Complemento/metabolismo , Humanos , Plasminogênio/química , Plasminogênio/metabolismo
14.
J Biol Chem ; 296: 100099, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33208461

RESUMO

Virulent strains of Streptococcus pyogenes (gram-positive group A Streptococcus pyogenes [GAS]) recruit host single-chain human plasminogen (hPg) to the cell surface-where in the case of Pattern D strains of GAS, hPg binds directly to the cells through a surface receptor, plasminogen-binding group A streptococcal M-protein (PAM). The coinherited Pattern D GAS-secreted streptokinase (SK2b) then accelerates cleavage of hPg at the R561-V562 peptide bond, resulting in the disulfide-linked two-chain protease, human plasmin (hPm). hPm localizes on the bacterial surface, assisting bacterial dissemination via proteolysis of host defense proteins. Studies using isolated domains from PAM and hPg revealed that the A-domain of PAM binds to the hPg kringle-2 module (K2hPg), but how this relates to the function of the full-length proteins is unclear. Herein, we use intact proteins to show that the lysine-binding site of K2hPg is a major determinant of the activation-resistant T-conformation of hPg. The binding of PAM to the lysine-binding site of K2hPg relaxes the conformation of hPg, leading to a greatly enhanced activation rate of hPg by SK2b. Domain swapping between hPg and mouse Pg emphasizes the importance of the Pg latent heavy chain (residues 1-561) in PAM binding and shows that while SK2b binds to both hPg and mouse Pg, the activation properties of streptokinase are strictly attributed to the serine protease domain (residues 562-791) of hPg. Overall, these data show that native hPg is locked in an activation-resistant conformation that is relaxed upon its direct binding to PAM, allowing hPm to form and provide GAS cells with a proteolytic surface.


Assuntos
Proteínas de Bactérias/metabolismo , Plasminogênio/química , Plasminogênio/metabolismo , Estreptoquinase/química , Estreptoquinase/metabolismo , Animais , Proteínas de Bactérias/química , Sítios de Ligação , Humanos , Camundongos , Ligação Proteica , Infecções Estreptocócicas/metabolismo , Virulência
15.
Protein Sci ; 29(12): 2446-2458, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058314

RESUMO

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is an evolutionarily conserved essential enzyme in the glycolytic pathway. GAPDH is also involved in a wide spectrum of non-catalytic cellular 'moonlighting' functions. Bacterial surface-associated GAPDHs engage in many host interactions that aid in colonization, pathogenesis, and virulence. We have structurally and functionally characterized the recombinant GAPDH of the obligate intracellular bacteria Chlamydia trachomatis, the leading cause of sexually transmitted bacterial and ocular infections. Contrary to earlier speculations, recent data confirm the presence of glucose-catabolizing enzymes including GAPDH in both stages of the biphasic life cycle of the bacterium. The high-resolution crystal structure described here provides a close-up view of the enzyme's active site and surface topology and reveals two chemically modified cysteine residues. Moreover, we show for the first time that purified C. trachomatis GAPDH binds to human plasminogen and plasmin. Based on the versatility of GAPDH's functions, data presented here emphasize the need for investigating the Chlamydiae GAPDH's involvement in biological functions beyond energy metabolism.


Assuntos
Proteínas de Bactérias/química , Chlamydia trachomatis/enzimologia , Gliceraldeído-3-Fosfato Desidrogenases/química , Modelos Moleculares , Plasminogênio/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Plasminogênio/metabolismo , Ligação Proteica
16.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105833

RESUMO

Significant amounts of enolase-a cytosolic enzyme involved in the glycolysis pathway-are exposed on the cell surface of Candida yeast. It has been hypothesized that this exposed enolase form contributes to infection-related phenomena such as fungal adhesion to human tissues, and the activation of fibrinolysis and extracellular matrix degradation. The aim of the present study was to characterize, in structural terms, the protein-protein interactions underlying these moonlighting functions of enolase. The tight binding of human vitronectin, fibronectin and plasminogen by purified C. albicans and C. tropicalis enolases was quantitatively analyzed by surface plasmon resonance measurements, and the dissociation constants of the formed complexes were determined to be in the 10-7-10-8 M range. In contrast, the binding of human proteins by the S.cerevisiae enzyme was much weaker. The chemical cross-linking method was used to map the sites on enolase molecules that come into direct contact with human proteins. An internal motif 235DKAGYKGKVGIAMDVASSEFYKDGK259 in C. albicans enolase was suggested to contribute to the binding of all three human proteins tested. Models for these interactions were developed and revealed the sites on the enolase molecule that bind human proteins, extensively overlap for these ligands, and are well-separated from the catalytic activity center.


Assuntos
Fibronectinas/metabolismo , Fosfopiruvato Hidratase/metabolismo , Plasminogênio/metabolismo , Vitronectina/metabolismo , Motivos de Aminoácidos , Anticorpos/metabolismo , Ligação Competitiva , Candida albicans/enzimologia , Candida tropicalis/enzimologia , Citosol/enzimologia , Fibronectinas/química , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Proteínas Imobilizadas/metabolismo , Modelos Moleculares , Fosfopiruvato Hidratase/química , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/imunologia , Plasminogênio/química , Vitronectina/química
17.
J Mol Graph Model ; 100: 107710, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32829149

RESUMO

The emergence of SARS-CoV-2 has prompted a worldwide health emergency. There is an urgent need for therapeutics, both through the repurposing of approved drugs and the development of new treatments. In addition to the viral drug targets, a number of human drug targets have been suggested. In theory, targeting human proteins should provide an advantage over targeting viral proteins in terms of drug resistance, which is commonly a problem in treating RNA viruses. This paper focuses on the human protein TMPRSS2, which supports coronavirus life cycles by cleaving viral spike proteins. The three-dimensional structure of TMPRSS2 is not known and so we have generated models of the TMPRSS2 in the apo state as well as in complex with a peptide substrate and putative inhibitors to aid future work. Importantly, many related human proteases have 80% or higher identity with TMPRSS2 in the S1-S1' subsites, with plasminogen and urokinase-type plasminogen activator (uPA) having 95% identity. We highlight 376 approved, investigational or experimental drugs targeting S1A serine proteases that may also inhibit TMPRSS2. Whilst the presence of a relatively uncommon lysine residue in the S2/S3 subsites means that some serine protease inhibitors will not inhibit TMPRSS2, this residue is likely to provide a handle for selective targeting in a focused drug discovery project. We discuss how experimental drugs targeting related serine proteases might be repurposed as TMPRSS2 inhibitors to treat coronaviruses.


Assuntos
Antivirais/química , Betacoronavirus/química , Inibidores de Proteases/química , Serina Endopeptidases/química , Bibliotecas de Moléculas Pequenas/química , Sequência de Aminoácidos , Betacoronavirus/enzimologia , COVID-19 , Domínio Catalítico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Reposicionamento de Medicamentos , Interações Hospedeiro-Patógeno , Humanos , Ligantes , Simulação de Dinâmica Molecular , Pandemias , Plasminogênio/antagonistas & inibidores , Plasminogênio/química , Plasminogênio/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , SARS-CoV-2 , Alinhamento de Sequência , Serina Endopeptidases/metabolismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Termodinâmica , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/química , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
18.
Sci Rep ; 10(1): 12117, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694536

RESUMO

One of the main culprits of Alzheimer's disease (AD) is the formation of toxic amyloid-ß (Aß) peptide polymers and the aggregation of Aß to form plaques in the brain. We have developed techniques to purify the catalytic domain of plasmin, micro-plasmin (µPlm), which can be used for an Aß-clearance based AD therapy. However, in serum, µPlm is irreversibly inhibited by its principal inhibitor α2-antiplasmin (α2-AP). In this study, we engineered and selected mutant forms of µPlm that are both catalytically active and insensitive to α2-AP inhibition. We identified surface residues of µPlm that might interact and bind α2-AP, and used an alanine-scanning mutagenesis method to select residues having higher activity but lower α2-AP inhibition. Then we employed saturation mutagenesis for further optimize both properties. Modeled complex structure of µPlm/α2-AP shows that F587 is a critical contact residue, which can be used as a starting position for further investigation.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Mutação , Fragmentos de Peptídeos/química , Plasminogênio/química , alfa 2-Antiplasmina/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Humanos , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Plasminogênio/genética , Plasminogênio/metabolismo , Conformação Proteica
19.
Biochem J ; 477(5): 953-970, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069359

RESUMO

To understand the role of substrate plasminogen kringles in its differential catalytic processing by the streptokinase - human plasmin (SK-HPN) activator enzyme, Fluorescence Resonance Energy Transfer (FRET) model was generated between the donor labeled activator enzyme and the acceptor labeled substrate plasminogen (for both kringle rich Lys plasminogen - LysPG, and kringle less microplasminogen - µPG as substrates). Different steps of plasminogen to plasmin catalysis i.e. substrate plasminogen docking to scissile peptide bond cleavage, chemical transformation into proteolytically active product, and the decoupling of the nascent product from the SK-HPN activator enzyme were segregated selectively using (1) FRET signal as a proximity sensor to score the interactions between the substrate and the activator during the cycle of catalysis, (2) active site titration studies and (3) kinetics of peptide bond cleavage in the substrate. Remarkably, active site titration studies and the kinetics of peptide bond cleavage have shown that post docking chemical transformation of the substrate into the product is independent of kringles adjacent to the catalytic domain (CD). Stopped-flow based rapid mixing experiments for kringle rich and kringle less substrate plasminogen derivatives under substrate saturating and single cycle turnover conditions have shown that the presence of kringle domains adjacent to the CD in the macromolecular substrate contributes by selectively speeding up the final step, namely the product release/expulsion step of catalysis by the streptokinase-plasmin(ogen) activator enzyme.


Assuntos
Domínio Catalítico/fisiologia , Fibrinolisina/metabolismo , Kringles/fisiologia , Plasminogênio/metabolismo , Estreptoquinase/metabolismo , Catálise , Fibrinolisina/química , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Plasminogênio/química , Estrutura Secundária de Proteína , Estreptoquinase/química , Especificidade por Substrato/fisiologia
20.
Microb Pathog ; 139: 103890, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31765768

RESUMO

Neisseria meningitidis is a human-restricted bacterium that can invade the bloodstream and cross the blood-brain barrier resulting in life-threatening sepsis and meningitis. Meningococci express a cytoplasmic peroxiredoxin-glutaredoxin (Prx5-Grx) hybrid protein that has also been identified on the bacterial surface. Here, recombinant Prx5-Grx was confirmed as a plasminogen (Plg)-binding protein, in an interaction which could be inhibited by the lysine analogue ε-aminocapronic acid. rPrx5-Grx derivatives bearing a substituted C-terminal lysine residue (rPrx5-GrxK244A), but not the active site cysteine residue (rPrx5-GrxC185A) or the sub-terminal rPrx5-GrxK230A lysine residue, exhibited significantly reduced Plg-binding. The absence of Prx5-Grx did not significantly reduce the ability of whole meningococcal cells to bind Plg, but under hydrogen peroxide-mediated oxidative stress, the N. meningitidis Δpxn5-grx mutant survived significantly better than the wild-type or complemented strains. Significantly, using human whole blood as a model of meningococcal bacteremia, it was found that the N. meningitidis Δpxn5-grx mutant had a survival defect compared with the parental or complemented strain, confirming an important role for Prx5-Grx in meningococcal pathogenesis.


Assuntos
Glutarredoxinas/metabolismo , Interações Hospedeiro-Patógeno , Infecções Meningocócicas/metabolismo , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/fisiologia , Peroxirredoxinas/metabolismo , Plasminogênio/metabolismo , Ensaio de Imunoadsorção Enzimática , Glutarredoxinas/química , Glutarredoxinas/genética , Humanos , Peróxido de Hidrogênio/metabolismo , Infecções Meningocócicas/diagnóstico , Infecções Meningocócicas/mortalidade , Mutação , Peroxirredoxinas/química , Peroxirredoxinas/genética , Plasminogênio/química , Prognóstico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...